
2020 GSoC PostgreSQL Project Proposal 
Performance Farm Benchmarks and Website Development 

Contact Information 
• Name: Pengyu Zhou (Eric Zhou) 
• Email Address: ericzpy1998@outlook.com 
• LinkedIn: Eric Pengyu Zhou 

Personal Background 
I finished my third year of electrical and computer engineering at Queen’s University in Canada. 
In classes, I learned concepts in computer engineering and implemented them in small scale 
class projects. By the end of May last year, I had a chance to start my internship at IBM Canada 
Lab. The most helpful thing to me is to get familiar with a large scale, enterprise-level product. In 
development, I mainly worked on testing and web development. To me, learning computer 
science knowledge, or how to code overall, is to find a way of resolving real-world problems. 
Therefore, by the time I learnt about GSoC, I’m very excited as it is a good platform that can 
offer me a chance to resolve people’s problems with other professionals.  

Why interested 
The first time I closely interacted with the open-source community was back in May 2019. A 
friend of mine worked on OpenJ9, she shared with me about the interesting moments during her 
work which inspired me to contribute as well. In Feb, My friends and I started a project that uses 
both the Django rest framework and PostgreSQL in the backend service. I did database related 
work and realized how different types of the database should be chosen, how the performance 
testing should be evaluated among kinds of designs, based on our business logic layer. This 
project experience gave me a chance to look deeply into PostgreSQL and made me more 
interested in contributing to the community. One day when I saw the pgperffarm project, I felt so 
excited that I explored the codebase, designed and implemented my unique feature (described 
in later sections).  

Introduction 
Since my proposal has a few large sections, I feel it would be helpful to give a brief summary of 
the structure: 

• The Overall Project Information covers the description of the project from both users’ 
and developers’ perspective. 

• The My Implementation of a Feature with Demo part where I showcase the feature I 
implemented during this period. 

• Designs of the features that will be implemented soon are covered in 2020 GSoC 
Feature Design and Implementation. 

• The Deliver with time table. 

mailto:ericzpy1998@outlook.com
https://www.linkedin.com/in/eric-pengyu-zhou/


Overall Project Information -- PgperfFarm 

PgperfFarm intro and 2020 GSoC targets 
PostgreSQL Performance Farm is a project that aims to collect and review performance data 
based on PgBench as changes are pushed to PostgreSQL. The whole infrastructure contains 
Vue.js as the frontEnd framework, python script to collect performance results, and DRF as the 
backend one to build an user-friendly website. 
 
Until now, the website is hosted with a set of base APIs running on the server. Machines are 
displayed and two records are shown with links to the commits.  In this proposal, the aim is to 
improve the usability, extendability and stability of the APIs, even that of the whole project as 
the APIs right now only cover a part of features.  
 
Another main purpose is to hook the authentication module in the performance farm to the one 
used in postgresql.org so that the community login system can be enabled. Currently, only 
users that are registered in Django admin can be authenticated by the simpleJWT module, 
which is what’s used right now. Based on the doc provided in pgweb repo[1], I would deliver a 
customized authentication module based on the existing one that would authenticate users in 
the central system. 
 
Last but not least, being able to customize test scripts will improve the user experience to 
another level, also in this proposal, I will demonstrate an approach to achieve it. 

Current technical stage/components 
Here we have information about where we are at in this project from a technical perspective. 
Currently the project can be divided into three sections. 
 
The essential part is the Client that fetches the config params from settings and then runs pre-
defined scripts. With the finish of the test running, the result is then fed into the server side to 
process. Server side handles all kinds of responses, most part of its job is to run ORM 
operations that communicate with the database to store/get information; UI is now for displaying 
most of the time. Fig.1 can help us better see the structure. 

 

https://www.postgresql.org/account/login/?next=/account/


Fig.1 how UI, client and rest-api three parts communicate with each other. 
 
Practically speaking, in the rest-api, the implementation is almost done in records, as well as the 
machine that contains basic post/get operations. Additionally, the users related operations are 
written based on the built-in Django auth module. 
 
There are still some features and improvements that mainly focus on all three parts, which I will 
elaborate on in the following sections. 

My Implementation of a Feature with Demo 

Allowing custom tests to be added with configurable parameters 
As we know the test case running on pgperffarm now is the built-in TPC-B script which covers 
all basic operations[2].  
 
There can be two phases of this feature. The first is to let users configure pgbench params. an 
object based on the existing PGBENCH_CONFIG in client/settings.py can be created to include 
more potential params. 
 
The second is to create a folder named ‘custom_scripts’ being put inside the client folder. Then 
by having a new type of collector called ‘scriptCollector’ containing the following methods in 
Tbl.1. 
 

Method Name Definition 

has_script check whether the dest folder has .sql files 

run_custom_scripts assemble a pgbench command that uses custom scripts to do tests and 
run it 

Tbl.1 The basic methods needed in scriptCollector  
 
A basic flow in the client side is shown in Fig.2 below. 
 



 
Fig.2 a general flow of getting results of custom scripts in the client. 

 
On the server-side, a new model including script name and name should be created so that in 
the future, the custom scripts can be fetched by UI and displayed with the result. To do so, the 
new model named ‘‘records_customscripts’’ will have at least the following fields, as shown in 
Tbl.2: 
 

Field Name Type 

TestResult Foreign Key 

script_name CharField 

script_content FileField 

add_date_time DateTimeField 

Tbl.2 The new model ‘records_customScripts’ containing fields details 
 
Fig.3 is the uploaded result having the custom script. As you can see, ‘insert.sql’ is a custom 
script sitting in a newly created table named ‘records_testscripts’, its test_result_id is referenced 
in the already existing table ‘records_testresult’ . See highlighted in orange. 



 
Fig.3 custom script is referenced records_testresult and stored in records_customscripts shown in 

pgadmin. 
 

2020 Gsoc Feature Design and Implementation 

PgperfFarm stability improvement 
The collection down below is a subset of problems I encountered during the local distribution 
development. There are some other improvements in terms of code cleanness and readability.  

Collection of issues 

• There is no way to test uploading in the UI. which missed the key feature that should be 
supported in Pgperffarm. 

 
• The handling of uploading results need extensive debugging since having a try-catch 

block for all operations is too general.  

 

try: 
secret = request.META.get("HTTP_AUTHORIZATION") 
ret = Machine.objects.filter(machine_secret=secret, state='A').get() 
test_machine = ret.id 
if test_machine <= 0: 
 raise TestDataUploadError("The machine is unavailable.") 

 
Taking fetching a Machine object shown above as an example, if the operation throws 
an      error of objects not found, the if statement wouldn't be invoked. Instead, the error 
would be caught by the catch block at the end of the method, which is a general one that 
prints status code and error msg of ‘object not found’. the point is that there are some 
similar object fetch operations existing in the try block, which makes it harder to to debug 
and spot the error. 



 
• API_URL ( http://<IP addr>/upload/ ) is put in the local client/settings_local.py for 

specifying the endpoint of uploading results. The hard coded url path is less efficient 
compared to having a method that dynamically combines the root url and target path. 

• In the development, the test results were not stored in tables as the statisticals there are 
all -1. The reason for it is that a superuser role of postgres that matches the name of the 
user in OS should be created. However, the reason was not explicit and required proper 
debuggings. Either this should be fixed into a way of using the default user ‘postgres’, or 
explicitly ask developers to create a proper user in the contribution guide. 

• Ideally, a temporal csv file containing results is stored in the file system every time when 
tests run. The reason is to backup the results so that it won’t get lost if the handling on 
the server side fails. In the codebase, the switch of whether or not collecting results is in 
settings, controlled by the constant csv in PGBENCH_CONFIG. However, the 
implementation of storing results in a csv file still can not be run through as the argument 
‘mode’ is not implemented yet, which is also mentioned in the TODO comment in 
pgbench.py. 

Plan to Address 

The bullet points below follow the exact order of that in the preceding collection of Issue section. 
Each of them offers a way of either fixing the issue or creating a related feature. 
 

• There should be a button vertically aligned with ‘upload a machine button’. The design 
reference is below. After clicking on it, a page with input fields should be displayed. 

• Inside the original big try block, there should be small nested try blocks that catch each 
ORM operation so that errors can be reported precisely. 

• Instead of writing request.post() inside upload_results method currently used in the repo: 

 

def _upload_results(self, results): 
postdata = results 
post = [] 
post.append(postdata) 

 
       headers = {'Content-Type', 'application/json; charset=utf-8', 
                 'Authorization: self._secret'} 
       r = requests.post(self._url.encode('utf-8'), 
                        data=json.dumps(post).encode('utf-8'), headers=headers) 

 

The API invocation should be abstracted into a util method that receives headers, data, 
url_path as arguments. On top of that, each api call can be rewritten into a method and 
put together inside a ‘api-invocation’ module so that it is easier for developers to 
organize the api section. The interface can be in a format like this: 

 

def _call_rest_api(self, headers, postdata): 
       # The base_url is defined in the settings_local.py 
       return requests.post(self._url.encode('utf-8'), 

data=json.dumps(postdata).encode('utf-8'),headers=headers) 

 



Then with the abstracted method, our upload result method can be then refactored into 
an example below, and the same rule applies to all the other methods that invokes rest 
api: 

 

def _upload_results(self, results): 
path = 'upload/' 
postdata = results 
… 

       headers = {'Content-Type', 'application/json; charset=utf-8', 'Authorization: 
   self._secret'} 

 _call_rest_api(path, headers, postdata) 

 
• Lastly, for collecting results in a csv file, the first job is to debug based on the current 

implementation as the basic methods are written already, for example, the method _ call 
_rest_api client/benchmarks/runner.py. 

Authentication module of PgperfFarm 

SimpleJWT -- Current stage 

 
Fig.4 a very basic flow of how JWT works  

 
Fig.4 shows how the JWT works in general with token exchange. The login module in the 
project has not fully implemented this feature, yet we can still manually generate access token 
and refresh token to access limited information as shown in Fig.5.  To make it work, token 
generation action should be integrated in the rest_api side and return tokens in response. 
 

 
Fig.5 using the token generated by SimpleJWT module to access information that requires login 

permission. 

Admin Registration/Login && Social Authentication -- Future Stage 

There will be two apps getting involved with the feature, Django-rest-framework-simplejwt and 
Django-rest-auth. Several factors are being considered here such as Blacklist, support for 

refresh/access token, user registration with activation, social media authentication, etc. 
 
In Django-rest-auth, there are views that can be modified to accommodate to return the JWT 
token in the response: LoginView/SocialLoginView/LogoutView. We can inherit and customize 



these view classes with our own implementation. For example, a class JWTSocialLoginView 
can be created that is inherited from SocialLoginView, by overriding the get_response method 
with a one that returns a token. 
 
The overall flow looks like this: 
 

 
Fig.6 an overall flow of how the auth module will be in the design. 

 
The detailed Interface can look like the following: 
 

# override the /rest-auth/login/ path with the login view from django-rest-framework-simplejwt 
urlpatterns = [ 
 … 
 url(r'^rest-auth/login/$', TokenLoginView.as_view(), name='token_obtain_pair'), 
 url(r'^rest-auth/', include('rest_auth.urls')), 
] 
# override SocialLoginView and its get_response method as mentioned precedingly. 
from rest_framework_simplejwt.views import TokenObtainPairView 
rom django.contrib.auth.views import LoginView 
 
# defined outside the TokenLoginView to work as a util method. 
def get_jwt_token(self, login_user): 
 # generate and return both access token and refresh token for a user. 
 
class TokenLoginView(LoginView): 

def post(self): 
 # login user and return both access token and refresh token in response. 
 login() 



return get_reponse(); 
 

def login(self): 
  # check if the request header contains a valid token 
  # if YES, login the user 
  login_after(); 
  # if NO, create a pair for the user. 
  get_jwt_token(login_user) 
  login_after(); 
  

def get_response(self): 
 # get the token and return it. 

 
Or there is a newly forked repo named dj-rest-auth[3] as well from Django-rest-auth. It was 
recently opened and replaced the rest_framwwork_jwt with django_rest-framework-simplejwt[4]. 
Both ways are worth trying and seem promising, but focusing on the social auth should be 
placed at first considering username/password login is easier to be compromised compared to it 
when facing web attacks. 
 
Last but not least, integrating the community sign-in feature is part of a long-term plan down the 
road. To start it, a conversion should be engaged with the PgInfra team.  

Responsive web design 
The Fig.7 below is an example of how UI components overlap with each other when starting to 
shrink window size. By making a website responsive, a Flexbox layout[5] can be applied with a 
different design that can be leveraged to improve user experience. 

 
Fig.7 the user page after login is not responsive to the window change 

 
Taking the tabs as an example shown in Fig.8, a long dropdown menu can be rendered instead 
when the width of the window is getting too small. 



 
Fig.8 a comparison between the original design (left) and the new one (right). The icons should be kept in 

the right dropdown menu as well. 
 
An usual way of starting this is to use @media to apply certain CSS rules when meeting the 
condition specified, for example, when the width is smaller than a predefined size. 

Migration from Django 1.11 to Django 2.2 
Last but not least, the support of Django 1.11, which is what we are using right now, will be 
stopped by the first quarter in 2020. An upgrade to 2.2 can keep the support being offered until 
April 2022. 
Some key new features that were introduced will be the plan-to-do[6][7]. After doing all steps 
layout below, we install Django 2.2, which the 1.11 version will be uninstalled automatically. 
 

• is_authenticated() is now is_authenticated, which the code snippet below needs to be 
modified to is_authenticated. 

 

def logout(self, results): 
if request.user.is_authenticated(): 

django_logout(request) 
return HttpResponseRedirect("%slogout/" % settings.PGAUTH_REDIRECT) 

  
• The on_delete argument for ForeignKey and OneToOneField is now required in models 

and migrations. as shown in Fig.11, ForeignKeys in the models of the record that don’t have 
on_delete argument are the examples that should be changed: 

 

class TestDataSet(models.Model): 
test_record = models.ForeignKey(TestRecord, verbose_name="test record id", 

   help_text="test record id") 
test_cate = models.ForeignKey(TestCategory, verbose_name="test cate id", 

help_text="test cate id") 

 
• The change in the URL pattern system. Taking the comparison below as an example: 



 

url(r'^articles/(?P<year>[0-9]{4})/$', views.year_archive) 

could be written as: 

path(r'^articles/<int:year>/$', views.year_archive) 

 
One thing to be noticed that the rewritten one is less constrained compared to the first 
one because the regular expression not only requires integer type but also the number 
of digits.  

Deliverables with Time Table 
 

Date Period Duration Goal 

Before May 6 ~ • Review the local contribution and refactor the code 
based on feedback. 

May 6 - May 12 1 week • Discuss with mentors about the opened PR for the 
feature of enabling custom testing scripts, and submit 
code. 

May 13 - May 
20  

1 week • Finalize the migration plan from 1.1 lTS to 2.2 LTS. 

May 21 - May 
27 

1 week • Implement the migration. 

May 27 - June 3 1 week • Finalize the solutions for 
o  how to handle the ORM operation properly 
o  how to dynamically generate the URL path to 

improve reusability and maintainability. 

June 3 - June 
17 

2 weeks • Work on refactoring views mentioned in the design. 
• Work on building the structure of generating API 

endpoints. 

June 17 - June 
29 

2 weeks • Send reviews and optimize the code with feedback (I 
intentionally give it a longer time as it mostly depends 
on the overall architecture of the project.). 

Evaulation 
June 29 - July 3  

5 days • Submit evaluations. 

July 3 - July 9 1 week • Finalize the design of the authentication module, 
discuss with mentors about its validity. 



July 10 - July 23 2 weeks • Work on the social authentication module first, and then 
the site registration/login. 

July 23 - July 29 1 week  • Send reviews and fix the code with feedback from 
mentors. 

Evaulation 
July 27 - July 
31  

5 days • Submit second evaluations 

July 31 - Aug 6 1 week • Finalize the design of UI including responsive web 
design and the new layout of user page containing a 
button for upload results 

Aug 7 - Aug 19 2 weeks • Implement the logic between the UI component and the 
client. 

• Implement the new design layout for responsive web 
design. 

Aug 20 - Aug 28 1 week • Submit code based on reviews, project summaries, and 
final evaluation 

Reference 
[1] Community authentication 2.0. 
https://github.com/postgres/pgweb/blob/master/docs/authentication.rst 
[2] Pgbench Documentation. https://www.postgresql.org/docs/11/pgbench.html 
[3] Dj-Rest-Auth. https://github.com/jazzband/dj-rest-auth 
[4] Pull Request for replacing rest_framework_jwt. https://github.com/jazzband/dj-rest-
auth/pull/3/ 
[5] FlexBox guide. https://css-tricks.com/snippets/css/a-guide-to-flexbox/ 
[6] Django 2.0 release notes. https://docs.djangoproject.com/en/3.0/releases/2.0/ 
[7] Django 2.2 release noteshttps://docs.djangoproject.com/en/3.0/releases/2.2/ 
 

https://github.com/postgres/pgweb/blob/master/docs/authentication.rst
https://www.postgresql.org/docs/11/pgbench.html
https://github.com/jazzband/dj-rest-auth
https://github.com/jazzband/dj-rest-auth/pull/3/
https://github.com/jazzband/dj-rest-auth/pull/3/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://docs.djangoproject.com/en/3.0/releases/2.0/
https://docs.djangoproject.com/en/3.0/releases/2.2/

